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An adjoint optimization method, based on the solution of an inverse flow prob-
lem, is proposed. Given a certain performance functional, it is necessary to find
its extremum with respect to a flow variable distribution on the domain boundary,
for example, pressure. The adjoint formulation delivers the functional gradient with
respect to such a flow variable distribution, and a descent method can be used for
optimization. The flow constraints are easily imposed in the parameterization of the
distributed control, and therefore those problems with several strict constraints on the
flow solution can be solved very efficiently. Conversely, the geometric constraints
are imposed either by additional partial differential equations, or by penalization.
By adequately constraining the geometric solution, the classical limitations of the
inverse problem design can be overcome. Several examples pertaining to internal
flows are given. c© 2001 Academic Press
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1. INTRODUCTION

Aerodynamic design can be assisted in two essentially different ways. One, the classic
approach, is based on the inverse problem solution; the other, which is more recent, relies
on numerical optimization.

In the inverse problem one must usually determine unknowns that are given in the natural,
i.e., direct position of the problem. For example, a typical inverse problem is to find the airfoil
geometry, given the flight speed and the pressure distribution on its surface. In the clas-
sical works of Mangler [1] and Lighthill [2] the airfoil inverse problem was solved in
the framework of potential flows and with the use of conformal mapping. Further de-
velopments of this solution method are extensively accounted in [3] and are related to
the introduction of viscous models for laminar and turbulent flows and to the solvabil-
ity conditions of the problem. Other examples of inverse problem solution methods are
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found in the collection AGARD-R-780. In addition, Polito’s [4] approach, relative to
the spectral solution of the inverse problem for airfoils, and that of Baueret al. [5] for
shockless airfoils, should be mentioned. One drawback of inverse problems is that they
may be ill posed, as certain wall pressure distributions on airfoils result in open or self-
intersecting profiles. Lighthill [2] discovered the solvability conditions that should be re-
spected by pressure distributions within an incompressible potential flow model, whereas
the solvability conditions for compressible flows were investigated in [6] and references
therein.

The appeal of the inverse problem solution for aerodynamic design declined as powerful
computers and sound numerical methods that allow numerical optimization of aerodynamic
components became available. Once a functional that defines the relative merit or cost
of a certain solution is defined, a numerical optimization algorithm can be as simple as
(i) computing the functional gradient relative to the controls by divided differences, (ii)
marching toward the functional extremum using gradient information. If the number of
parameters that have to be optimized is in fact not very small, finding the gradient requires a
huge amount of computational time. The computation of each gradient component needs a
flow evaluation, making optimizations using the Euler or Navier–Stokes models unfeasible.

Greater computational efficiency is obtained by using the adjoint method (see [7–9]) to
compute the functional gradient. Evaluation of the gradient requires one adjoint calculation
and one flow calculation, regardless of the number of design variables. This approach has
opened up the possibility of optimizing tridimensional compressible viscous flows over
wing–body configurations at high Reynolds numbers; see [10].

The advantages of numerical optimization over the inverse problem can be summarized
in that numerical optimization allows the maximization or minimization of global quantities
such as lift or drag in the presence of constraints, whereas for inverse problems the design
is limited to the pressure distribution selection on the boundary, which is given on the basis
of designer experience and is therefore somewhat arbitrary. In addition, no control of the
final geometry is possible. In this work we try to overcome these weaknesses by extending
the adjoint optimization method to inverse problems.

To formulate a shape optimization problem we need a functionalF to be either minimized
or maximized. We haveF = F [U (0), 0] where U is the flow variables vector and0
represents the geometry. In the adjoint method such an extremum problem is solved using
a variational technique and introducing a Lagrange multiplier vector3 dual of the flow
variables vector. Using the Lagrange multipliers we are able to writeδF for 0← 0 + δ0,
at the cost of solving a system of partial differential equations (PDEs) for the Lagrange
multipliers which is the mathematical adjoint of the governing equations. Once the gradient
is known, the initial geometry is perturbed accordingly and the procedure is started all over
again until a convergence criterion is satisfied.

The adjoint method can be adapted to an inverse problem formulation. Letp(s) be
the flow quantity we prescribe on the flow-field boundary, where for examplep is the
pressure ands is the curvilinear coordinate along the boundary. We define a cost/merit
functional in much the same way as before:F = F [U (p), p]. It should be noted that
the control is now the pressure distribution on the boundary, whereas in usual adjoint
methods the control is the boundary shape. The derivation of the adjoint follows the same
steps as in the shape optimization case, to finally obtainδF for p(s)← p(s)+ δp(s).
The pressure distribution is then altered according to the gradient information until the
extremum is eventually reached. In this formulation the boundary shape results from the
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solution of the inverse problem corresponding to each optimization step. In this respect the
optimization of an inverse problem can be considered aflow design optimizationas opposed
to the optimization of a direct problem, which is known asshape design optimization. The
idea of optimizing the pressure distribution is not new; it was proposed in [11] with the
motivation that “this procedure avoids most if not all of the limitations of the pure inverse
method.”

Flow design optimization offers a very simple way of implementing flow constraints,
as they can be directly included in the parameterization of the control. Inevitably, in
the design process it is necessary to focus on a given model to account for the physi-
cally relevant phenomena which affect performance. Yet, it is mandatory to include re-
sults obtained by more sophisticated models or other disciplines, in the selected model.
These results usually take the form of constraints on the governing equation variables,
and not on the geometry. For example, let us consider a propeller to be designed to max-
imize traction for given shaft work. The selected model is that of an inviscid compress-
ible fluid governed by the compressible Euler equations, a model that is appropriate to
compute the traction of a propeller. However, one must also take into account the con-
straints on the emitted noise. These requirements may have the form of constraints on
the load of the propeller blades, which in turn is a function of the flow variables at the
wall. Therefore any time we have a design problem where the effects that are not rep-
resented in the governing equations are to be considered, the optimization based on the
solution of the inverse problem adjoint equations is a natural way of formulating the
problem.

For example, in the numerical tests, a diffuser is studied where the pressure distribution
at the wall is optimized for minimal axial deviation at the outlet. The maximum attainable
pressure gradient is constrained in order to avoid premature flow detachment. In the usual
adjoint optimal shape design formulation, flow constraints are accounted for either through
additional Lagrange multipliers, which means there are additional PDEs to be solved, or
by a penalization in the functional. For the method proposed here, the situation is reversed:
Geometric constraints result in either additional PDEs or in functional penalization. Hence,
for example, the inverse problem closure and univalence conditions for airfoils are bypassed
by imposing appropriate geometric constraints on the solution.

In the following, the problem is formulated and the gradient is derived in detail for two
applications which are solved using an inverse problem. The first example is intended to
make the ideas clear. We then concentrate on a case that is complicated by a flow model
which describes a turbo fan stage. As previously mentioned, the first case concerns the
problem of designing a diffuser. We wish to determine the wall pressure distribution so that
the flow axial deviation at the outlet is at a minimum, with constraints on the allowed wall
pressure gradient.

The second example is more oriented to applications and is related to a flow model
of a complete piece of turbo-machinery; see [13]. The blades of the turbo-machinery are
modeled as flow surfaces of zero thickness which exert forces on the fluid flow. This
approximation introduces volume forces in the compressible Euler equations, which is
the model adopted for the flow. Our method is such that, instead of modifying the shape
of the flow surfaces that model the blades, we give the force that the blades exert on the
flow and let the geometry accommodate this distribution of forces. The volume force dis-
tribution itself is modified according to the functional gradient, so that, for example, thrust
is maximized.
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2. DIFFUSER WITH MINIMAL AXIAL DEVIATION AT THE OUTLET

Let us consider a two-dimensional diffuser with total pressure, total temperature, and
flow angles imposed at the inlet; pressure is given at the outlet. The walls of the diffuser
should be designed so that the flow at the outlet has minimal axial deviation and the diffuser
causes a given pressure rise with a constraint on the maximum wall pressure gradient.
The constraint imposed qualitatively reflects the Stratford [14] semiempirical separation
criterion for decelerated turbulent boundary layers,

cp

√
s

dcp

ds
= Cs

1
10 , (1)

whereC is a constant function of the Reynolds number per unit length,s is the wall curvi-
linear coordinate, andcp is the pressure coefficient. We takes≈ x andcp = 2

p− pin

ρU2
in

, where
in refers to the inlet section. As the dynamic pressure is approximately equal to the difference
between the total pressurep0 and the inlet pressurepin, we obtaindp

dx ≈ dcp

dx (p0− pin). The
maximum allowable pressure gradient at the wall II(x) is displayed in Fig. 1. In addition,
the gradient is also required to be positive. This simple problem can be encountered in the
design of wind tunnel diffusers, air-breathing engine intakes, or turbo-machine casings.

2.1. Flow Model and Inverse Problem Solution Method

The flow is governed by the two-dimensional compressible Euler equations. In Cartesian
coordinates (x, y), one has

∂U
∂t
+ ∂F

∂x
+ ∂G

∂y
= 0, (2)

FIG. 1. Constraint on the pressure gradient along thex-axis.
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where

U =


ρ

ρu
ρw

e

 F =


ρu

p+ ρu2

ρuw

u(p+ e)

 G =


ρw

ρuw

p+ ρw2

w(p+ e)

 ,

and as usual,ρ is the density,p is the pressure, ande is the total internal energy per unit
volume. The diffuser geometry is unknown, but it is obtained by imposing a given pressure
distribution p = pe(s) on the solid boundaries, as opposed to direct problems where the
geometry is known and the no-through-flow condition applies on the diffuser walls. In this
sense, for the sake of conciseness, we can write Eq. 2 asE(U, pe) = 0.

This solution method is based on the ideas presented in [15] and [16]. The diffuser
walls can be considered deformable and impermeable surfaces fastened to the diffuser inlet
section that move under the effect of the imposed pressure. An initial wall configuration is
guessed. The resulting transient is described by integrating the equations that govern the
time-dependent flow motion. The results differ from those of a usual flow solver in two
ways. The first is that the no-through-flow boundary condition at the wall is replaced by
a condition of given pressure; the second is that the number of equations that must solved
is increased by one, the kinematic equation governing the surface motion. This equation is
obtained by imposing the condition that the speed of the moving wall must be locally equal
to the normal flow velocity. Therefore, in terms of computational cost, the inverse problem
solution is equivalent to a direct solution.

A finite volume formulation, based on the approximate Riemann solver [17] to compute
the fluxes at cell interfaces, is applied. Second-order spatial accuracy is obtained using an
ENO class method [18]. At the end of the transient, the walls assume the shape that solves
the inverse problem, i.e., find the shape which induces the given pressure distribution on
the walls.

2.2. Variational Formulation, Adjoint Equations, and Gradient

The wall pressurepe(s) that should be imposed on the diffuser walls which minimize
the functional

D[ pe(s)] = 1

2

∫
out

(
w

u

)2

dy (3)

has to be determined. In order to solve such a constrained extremum problem, we introduce
the Lagrangian function

L(U, pe, 3) = D +
∫

Ä

t3E(U,pe) dÄ, (4)

wheret3(x, y) = {λ1, λ2, λ3, λ4} are Lagrange multipliers. This approach allows us to treat
the problem as unconstrained. A stationary configuration is found when the variation ofL
with respect to all its arguments, which are now considered independent functions, is 0.
ComputingδL as in [20], we obtain

δL = δLU + δLpe + δL3 (5)
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with

δLU = δDU +
∫

6

t3(FU nx +GU ny)δU dσ −
∫

Ä

(t3xFU + t3yGU )δU dÄ, (6)

where6 is the boundary of flow fieldÄ, andFU , GU are the Jacobian matrices ofF andG.
All contributions toδLmust be 0 at the maximum. Hence, to find a stationary point, we

enforce

δLU = 0 δL3 = 0.

In general this results inδLpe 6= 0. To reach the minimum, we takeδpe so thatδL =
δLpe < 0. It should be noted that the variations ofLwith respect to the Lagrange multipliers
3 simply yield the flow equations.

From the conditionδLU = 0, the adjoint of the Euler equations and its boundary condi-
tions are obtained.

t3xFU + t3yGU = 0 in Ä (7)

and [
w

u

∂

∂U

(
w

u

)
h(6)+ t3(FU nx +GU ny)

]
δU = 0 on6, (8)

whereh(6) is 1 at the outlet and 0 elsewhere. The previous relation requires additional
interpretation according to the flow equation boundary conditions. For the inlet and outlet
boundary conditions, see Eq. (43) for a similar case. The wall adjoint boundary condition
is peculiar to this problem and is hereafter considered.

Let us consider Eq. (8). At the moving wall,δU can be written in terms of only three
independent variations, asδpe(s) = 0. We takeδ(ρe) as the dependent variation and obtain

(FU nx +GU ny)δU =


0 nx ny

0 unx uny

0 wnx wny

0 nx(e+ p)/ρ ny(e+ p)/ρ




δρ

δ(ρu)

δ(ρv)

 ,

where we take into account that the wall velocity is 0 when the inverse problem solution is
attained. Equation (8), then, translates into the single condition

λ1+ uλ2+ wλ3+ e+ p

ρ
λ4 = 0 (9)

that has to be satisfied at the wall. The functional gradient is

δDpe =
∫

wall
(λ2nx + λ3ny)δp ds. (10)
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2.2.1. Pressure Parameterization

The diffuser has imposed inletpin and outletpout wall pressures. The distributed control
is the wall pressure gradient. On the discrete level, the pressure is recovered as

pe(xi ) = pin +
i∑

j=2

m(xj )1xj , m(xj ) =
(

dpe

dx

)
j

(11)

with the constraint

N∑
j=2

m(xj )1xj = pout− pin (12)

to match the exit pressure.1xj is the grid size in thex-direction andN is the number of
computational points in thex-direction. We haveN − 1 control parameters represented by
the pressure gradient at the discretization points.

Let us consider Eq. (10) and discretize it as

δDpe =
N∑

j=2

χ j δpj , (13)

with χ j = [(λ2nx + λ3ny)1s] j andδpj =
∑ j

i=2 δm(xi )1xi . We have

δDpe =
N∑

i=2

δm(xi )1xi

N∑
j=i

χ j . (14)

Take ψi = 1xi
∑N

j=i χ j . If there were no constraints on the pressure gradient, we
could simply setδm(xi ) = −%ψi to obtainδD < 0. Yet, in view of Eq. (12), we also
obtain

N∑
i=2

ϕi δm(xi )1xi = 0. (15)

If 0 ≤ m(xi ) ≤ 5(xi ), thenϕi = 1; otherwise we takeδm(xi ) = 0 andϕi = 0. By project-
ing the gradient onto the plane tangent to the constraints (see Fig. 2) we haveδD < 0 by
taking

{φi } × {ψi } × {φi } = δm(xi ) = %

ψi

N∑
j=2

ϕ2
j − ϕi

N∑
j=2

ψ j ϕ j

. (16)

The solution of the optimization problem is achieved by initializing the coefficientsm(xj ),
computing the corresponding wall geometry using the inverse problem, solving the adjoint
equations, and updating the coefficientsm(xj ), according to the projected gradient, until
the minimum is reached.
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FIG. 2. Projection of the gradient onto the constraint space.

2.3. Comparison with Classical Adjoint Formulation

The same problem can be solved by an adjoint formulation where the controls are the
position of the upper boundary discretization points. In such a case, the functional to be
minimized is

D1[0w] = 1

2

∫
out

(
w

u

)2

dy, (17)

where0w is the upper wall. The solution to such a problem would be a straight duct, however,
leading to the same pressure at the inlet and outlet. In order to accomplish a certain pressure
increase between the inlet and outlet it is also necessary to require that

D2[0w] = (pw
in − p∗in

)2 =
∫

0w

[ pw(0w)− p∗in]2 f (0w) d0w

be minimized, wherepw
in is the actual wall pressure at the inlet,p∗in is the desired pressure,

and f (0w) is the Dirac delta centered at the inlet. The outlet pressure is imposed in the flow
equation boundary conditions.

In addition, the pressure gradient at the upper wall must be bounded from above by a
certain distributiongmax(0w), for example, the Stratford distribution. We also want to avoid
negative pressure gradients, as in the case in the previous sections. Therefore we have two
additional functionals to minimize:

D3[0w] =
(

dp

dx
− gmax

)2

+
∣∣∣∣dp

dx
− gmax

∣∣∣∣ (dp

dx
− gmax

)
and

D4[0w] =
(

dp

dx

)2

−
∣∣∣∣dp

dx

∣∣∣∣ (dp

dx

)
.
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The way to deal with such additional constraints is usually to penalize the original functional
to also minimize the additional terms. The Lagrangian becomes

L(U, 0w, 3) =
4∑

i=1

$i Di +
∫

Ä

t3E(U, 0w) dÄ+
∫

0w

µ(ρ(unx + vny)) d0w, (18)

where$i are arbitrarily chosen weights andµ is an additional Lagrange multiplier to
account for the no-through-flow condition. It is well known that such functionals lead
to ill conditioned optimization problems resulting in very time-consuming or unfeasible
calculations. Further discussion of the penalization approach and alternate approaches can
be found in [12].

Let us forget the pressure gradient bounds and consider a problem where onlyD2 is
present. We want to find the shape of a diffuser so that it causes a certain pressure in-
crease. Since the outlet is allowed to change dimension, the optimization becomes very
stiff. This is intuitively understood as follows. Let the initial configuration be a constant
section duct, so that the pressure is constant and equal to the outlet value. Sincep∗in < pout

we have two contrasting effects. Lowering the wall locally, we would obtain a pressure
decrease and consequently a decrease inD2. On the other hand, the wall must rise to ac-
commodate a global section increase which determines a pressure decrement at the inlet,
for a given outlet pressure. The authors have in fact tested a usual adjoint code [20] for
this simple problem. By using a conjugate gradient descent method without line search, we
were only able to attain a gradient reduction of about two orders of magnitude after 10,000
optimization steps! Nozzle results presented in the literature, e.g., [19] and [20], show sim-
ilar stiff behavior even if the optimization problem is simpler, as the outlet geometry is
fixed.

3. FAN STAGE WITH MAXIMUM THRUST

The fan of a turbojet engine is composed of a rotor that raises the total pressure of the
flow and a stator to deflect the flux. We want to determine, using a simplified flow model,
the rotor and stator geometries that result in maximum thrust of the fan, for a given amount
of work performed on the fluid.

3.1. Turbo-machine Flow Model in the Meridional Plane

The flow deflection through the rotors and stators of a turbo-machine is the result of the
forces that rotor and stator blades exert on the flow. An axisymmetric model of a turbo-
machine can be set up by replacing the blade rows with volume forces. It is assumed that the
blade rows have vanishing thickness and infinite solidity, so that the single blade coincides
with a stream surface. Thus, in the case of an inviscid flow, the effect of solid blades is
modeled by volume forces orthogonal to the stream surfaces.

Let

F = Fx i + Fr ξ + Fϑη (19)

be the volume force, wherei, ξ , andη are the unit vectors that are pertinent to the axial,
radial, and tangential directions in cylindrical coordinates(xi, r ξ, ϑη). The distribution
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of the tangential componentFϑ = Fϑ(x, r ) is the function that has to be optimized,
the same way that the shape of a wall is usually optimized in common optimization
algorithms.

The geometry of the blades, represented by 2D manifolds

2(x, r, ϑ) = 0 (20)

is found by solving

(q− j ωr η) · ∇2 = 0 (21)

since the blades are considered stream surfaces of the absolute or relative motion for the
stators and rotors, respectively. In the previous equation,q = ui + wξ + vη is the flow
velocity vector,ω is the angular velocity of the rotors, andj = 0 for the stators,j = 1 for
the rotors.

The components of the volume forceFx andFr are determined by enforcing the condition
that the blade manifolds be orthogonal to the volume forces

F×∇2 = 0, (22)

which implies

Fx = r
2x

2ϑ

Fϑ (23)

and

Fr = r
2r

2ϑ

Fϑ . (24)

3.2. Inverse Problem

In this section details are given of the solution technique of the inverse problem consid-
eringFϑ(x, r ) as known. It should be noted that the distributionFϑ(x, r ) is updated during
the optimization in order to maximize the cost function.

The solution method is based on the ideas presented in [13–16] and is based on a
time-dependent process. The blades can be seen as deformable and impermeable surfaces
constrained at the leading edge. They move like fastened sails waving under the effect of
the wind. An initial configuration of such surfaces is guessed. The subsequent transient is
described by integrating the equations governing the time-dependent flow motion. At the
end of the transient, the blades assume the shape that solves the inverse problem.

In cylindrical coordinates, the compressible Euler equations with volume forces acting
on the fluid are

∂U
∂t
+ ∂A

∂x
+ ∂B

∂r
+Q = 0, (25)
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where

U =


ρ

ρu
ρv

ρw

e

 A =



ρu

p+ ρu2

ρuv

ρuw

u(p+ e)


B =



ρw

ρuw

ρvw

p+ ρw2

w(p+ e)



Q =



ρw

r + ρuα

ρuw

r − Fx + ρu2α

2ρvw

r − Fθ

ρ(v2−w2)

r − Fr

w(p+e)
r − F · q+ u(p+ e)α


.

The boundary conditions at the entry section are the flow angles, the total pressure, and the
total temperature when the flow is subsonic, while all the flow properties are prescribed
if the flow is supersonic; at the exit section, the static pressure is prescribed if the flow
is subsonic, while no boundary conditions are needed when the flow is supersonic. The
blockage caused by the blades is taken into account by the terms containing the coefficient
α, with

α = ∂(log4)

∂x

and with4 being the free passage per unit radius,

4 = 2πr − T,

whereT = T(x, r ) is the sum of the estimated blade thickness, including the boundary
layers.

The system of Eq. (25) is integrated in time using a finite volume formulation based on an
approximate Riemann solver [17] to compute the fluxes at the cell interfaces. Second-order
spatial accuracy is obtained using an ENO class method [18].

A blade surface changes shape during the transient to obey the impermeable wall condi-
tion. Let us express Eq. (20) as

2(x, r, ϑ, t) = ϑ − g(x, r, t) = 0 (26)

so that Eqs. (23) and (24) become

Fx = −rgx Fϑ (27)

Fr = −rgr Fϑ . (28)

Flow particles on2(x, r, ϑ, t) = 0 must remain on the manifold for the impermeable
wall condition. It follows that, during the transient, the Langragian derivative of the function
2(x, r, ϑ, t) has to be null,

d2

dt
= 2t + (q − j ωr η) · ∇2 = 0 (29)
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that can be written as

gt = −ugx − wgr + v − j ωr

r
, (30)

with j = 0 for stators andj = 1 for rotors. The above equation is solved coupled to the
Euler equations, and it is integrated in time upwinding the spatial derivatives ofg according
to u andw.

3.3. Flow Equations Adjoint

The functional we consider is the conventional thrust expressed as

T(Fϑ) =
[∫ rt

rh

(p+ ρu2)r dr

]
out

−
[∫ rt

rh

(p+ ρu2)r dr

]
in

=
∫

0io

H(U ) d0, (31)

where Fϑ is the control, whilert and rh are the tip and hub radius, respectively. The
maximum ofT is constrained by the steady state Euler equations

E(Fϑ) = Ax + Br +Q = 0 (32)

and by the kinematic constraint on the blades

G(U(Fϑ)) = ugx + wgr − v − j ωr

r
= 0. (33)

We introduce the Lagrangian function

L(U, g, Fϑ , 3, µ) =
∫

0io

H(U) d0 +
∫

Ä

t3E(U, Fϑ , g) dÄ+
∫

Ä

µG(U, g) dÄ, (34)

where t3(x, r ) = {λ1, λ2, λ3, λ4, λ5} and µ = µ(x, r ) are Lagrange multipliers. Let us
computeδL. We have

δL = δLU + δLFϑ + δLg + δL3 + δLµ, (35)

with

δLU =
∫

0io

∂H
∂U

δU d0 +
∫

Ä

t3δEU dÄ+
∫

Ä

µ
∂G

∂U
δU dÄ (36)

δL3 =
∫

Ä

tδ3E(U, Fϑ , g) dÄ (37)

δLµ =
∫

Ä

G(U, g)δµ dÄ (38)

δLFϑ =
∫

Ä

t3
∂Q
∂Fϑ

δFϑ dÄ (39)

δLg =
∫

Ä

t3δQg dÄ+
∫

Ä

µδGg dÄ. (40)
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The vectors∂Q
∂Fϑ and ∂G

∂U are easily computed;∂H
∂U is the derivative of the difference of the

flux component in thex-direction, taken at the inlet and outlet sections.
The single contributions ofδL must be 0 at the maximum. At the stationary point we

enforce

δLU = 0 δL3 = 0 δLµ = 0 δLg = 0.

In general this results inδLFϑ 6= 0. To reach the maximum we takeδFϑ so thatδL =
δLFϑ > 0, for example using a conjugate gradient method, as explained in the following.

We can manipulate Eq. (35), obtaining

δLU =
∫

0io

∂H
∂U

δU d0 +
∫

6

t3(AU nx + BU nr )δU dσ −
∫

Ä

( t3xAU + t3r BU )δU dÄ

+
∫

Ä

t3
∂Q
∂U

δU dÄ+
∫

Ä

µ
∂G

∂U
δU dÄ, (41)

where6 is the entire border of the flow fieldÄ, andAU , BU , andQU are Jacobian matrices.
From the conditionδLU = 0 we obtain the adjoint of the flow equations and the relative
boundary conditions; that is,

t3xAU + t3r BU − t3
∂Q
∂U
− µ

∂G

∂U
= 0 in Ä (42)

and [
∂H∗

∂U
+ t3(AU nx + BU nr )

]
δU = 0 on6, (43)

whereH ∗ = H for the inlet and the outlet, andH∗ = 0 elsewhere.
The conditionδLg = 0 yields

δLg =
∫

Äb

µδGg dÄ+
∫

Äb

t3δQg dÄ

=
∫

6b

µ(q · n)δg dσ −
∫

Äb

[(µu)x + (µw)r ]δg dÄ+
∫

Äb

t3δQg dÄ = 0, (44)

where it should be noted that the domain of integrationÄb and the bounding curve0b are
those relative to the blades. The last integral in the above equation is∫

Äb

t3δQg dÄ=
∫

Äb

t3K∇(δg) dÄ=
∫

6b

(t3K) · n δg dσ −
∫

Äb

∇ · (t3K)δg dÄ, (45)

wheren = (nx, ny) and

K = r F ϑ


0 0
1 0
0 0
0 1
u w

 .
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Hence, the adjoint of the kinematic constraint is

(µu)x + (µw)r −∇ · (t3K) = 0 in Äb (46)

and

[µ(q · n)+ (t3K) · n] δg = 0 on0b, (47)

which yields the boundary conditions for Eq. (46) as explained in the following. The adjoint
equation of the kinematic constraint is coupled to Eq. (42) the same way the kinematic
constraint is coupled to the flow equations.

It should be noted that the variations ofL with respect to3 andµ simply yield the flow
equations and the kinematic constraint respectively.

Finally, we are left with

δL = δLFϑ =
∫

Äb

t3
∂Q
∂Fϑ

δFϑ dÄ. (48)

This functional depends onU, 3, µ; these are variables that satisfy the flow equations,
the kinematic constraint, and the respective adjoints. Therefore, if we update the present
distribution ofFϑ with

δFϑ = %t3
∂Q
∂Fϑ

,

taking % > 0, thenδL > 0. By iterating such a procedure, the maximum is eventually
reached.

This method, namely the gradient method, has a very slow convergence rate. Better
convergence rates are obtained with the conjugate gradient method [21], in which the
correction toFϑ at the iteratek is

(δFϑ)k = %

[(
t3

∂Q
∂Fϑ

)k

− βk−1(δFϑ)k−1

]
,

with

βk−1 =
∫

Äb

[(
t3 ∂Q

∂Fϑ

)k − (t3 ∂Q
∂Fϑ

)k−1
](

t3 ∂Q
∂Fϑ

)k
dÄ∫

Äb

[(
t3 ∂Q

∂Fϑ

)k−1
]2

dÄ

.

3.3.1. Inlet Boundary Conditions

Let n = (0,−1, 0) at the inlet, so that Eq. (43) reduces to

∂H∗

∂U
δU− t3

∂A
∂U

δU = 0. (49)

As the flow variablesU have given conditions at the boundaries, the variationδU at
the inlet is such that the boundary conditions onU are still satisfied. For example, if the
inlet flow is supersonic, all of the components ofU are given. In this caseδU = 0 and
consequently there is no boundary condition on3.
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In the case of subsonic inlet, four boundary conditions must be provided, for example,

dS= 0, dTo = 0, dσ = 0, dε = 0, (50)

where

S= log
p

ρ
− 2κ logρ (51)

To = p

ρ
+ κ

γ
(u2+ v2+ w2) = −2κ2

γ
V2+ 2κ

u5

u1
(52)

σ = v

u
= u3

u2
, ε = w

u
= u4

u2
, (53)

where we setU = (ρ, ρu, ρv, ρw, e) = (u1, u2, u3, u4, u5); κ = γ−1
2 ; andγ is the specific

heat ratio. We have

δS= ∂S
∂u1

δu1+ ∂S
∂u2

δu2+ ∂S
∂u3

δu3+ ∂S
∂u4

δu4+ ∂S
∂u5

δu5 = 0

δT = ∂T
∂u1

δu1+ ∂T
∂u2

δu2+ ∂T
∂u3

δu3+ ∂T
∂u4

δu4+ ∂T
∂u5

δu5 = 0

δσ = ∂σ
∂u2

δu2+ ∂σ
∂u3

δu3 = 0

δε = ∂ε
∂u2

δu2+ ∂ε
∂u4

δu4 = 0.

(54)

By selectingδu2 as the independent variation, we obtain

δU =



u1V2

u2((1+ γ κ)V2− 2γ κu1u5)

1
u3
u2

u4
u2

V2((1− 4κ2)u1u5+ 2κ2V2)

u1u2((1+ γ κ)V2− 2γ κu1u5)


δu2 = Ji δu2 (55)

from Eq. (54), and we have

[
∂H∗

∂U
− t3

∂A
∂U

]
Ji δu2 = 0 (56)

from Eq. (49) so that for a generic increment

[
∂H∗

∂U
− t3

∂A
∂U

]
Ji = 0,

which is a scalar relation that has to be satisfied by the components of3. We have four
conditions for the flow problem, and one for the adjoint equations.
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3.3.2. Outlet Boundary Conditions

At the outlet the situation is specular and Eq. (43) still holds. Again, the admissible
variationsδU must satisfy the flow boundary condition. If the regime is supersonic, the
outlet conditions for the flow are determined from the interior and, conversely, the costate
equations need five conditions to be prescribed at the exit. We pose3 = 0.

If the flow is subsonic, one condition has to be supplied forδU, e.g., the static pressure
p at the outlet

p = 2κe− κρV2 = constant. (57)

Hence,

δp = ∂p

∂u1
δu1+ ∂p

∂u2
δu2+ ∂p

∂u3
δu3+ ∂p

∂u4
δu4+ ∂p

∂u5
δu5 = 0, (58)

which gives one of the components ofδU, let us sayδu5, as a function of the others. As
n = (0, 1, 0), we obtain

[
∂H∗

∂U
+ t3

∂A
∂U

]
Jo


δu1

δu2

δu3

δu4

 = 0, (59)

whereJ is

Jo =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

−V2

2 u v w

 . (60)

Finally, from Eq. (59), we obtain[
∂H∗

∂U
+ t3

∂A
∂U

]
Jo = 0, (61)

the four boundary conditions for3 on the outlet boundary.

3.3.3. Boundary Conditions at the Wall

At the wall we have

t3

(
∂A
∂U

nx + ∂B
∂U

nr

)
δU = 0. (62)

The no-through-flow condition at the wall requires the normal velocity component to be
zero, so that the above equation becomes

3{0, δpnx, 0, δpnr , 0} = 0 (63)
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and finally

λ2nx + λ4nr = 0. (64)

3.3.4. Kinematic Adjoint Boundary Conditions

δg = 0 at the blade leading edge, and Eq. (47) is satisfied. There is no constraint onδg
at the trailing edge; hence we have

[µ(q · n)+ (t3K) · n] = 0, (65)

which is the boundary condition for the kinematic adjoint equation at the trailing edge.

3.4. Constraint on Rotor Blades

Rotor blades exchange work with the fluid. When looking for the maximum thrust, we
must keep the workW, performed on the fluid per unit time, constant. The force acting on
the blade is written in the form

Fθ (x, r ) = f (r )g(x); (66)

therefore the work in the meridional plane per unit time is

W =
∫

Äb

f (r )g(x)ωr dr dx =
∫ rt

rh

f (r )ωc(r )r dr, (67)

wherec(r ) is the chord of the blade profile andÄb is area of the rotor surface projected
onto the meridional plane. In discrete formW can be expressed as

W =
M∑

i=1

f (ri )ϕ(ri ) =
M∑

i=1

fi ϕi , (68)

whereϕ(ri ) = ωc(ri )ri (ri − ri−1) and M is the radial number of the blade discretization
points. PosingW = W0, we have

δW =
M∑

i=1

δ fi ϕi = 0. (69)

This equation is satisfied ifδ f andφ are orthogonal in the appropriate Euclidean space.
The variation of Lagrangian Eq. (48) is written as

δL =
∫

ψδFθ dÄ, ψ = t3
∂Q
∂Fϑ

, (70)

and in discrete form we have

δL =
∑

ψi δ fi . (71)
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As we are searching for the maximum thrust, we must choose the controlsδ fi so that Eq. (69)
is verified and the incrementδL =∑ψi δ fi assumes its highest positive value. As in the
diffuser case, we obtain

δ fi = %

ψi

M∑
j=1

ϕ2
j − ϕi

M∑
j=1

ψ j ϕ j

. (72)

4. ADJOINT EQUATION NUMERICAL SOLUTION

The numerical solution of the adjoint equations is obtained by using a first-order time-
dependent technique based on a finite volume discretization. The solver computes the fluxes
at cell interfaces using a flux-vector splitting technique. In a similar way, the boundary
conditions are imposed on the numerical fluxes at the computational field edges.

Let us consider the adjoint equations. If a time derivativet3τ is added to Eqs. (42) and
(43), we are led to the hyperbolic system

t3τ − t3xAU − t3r BU + t3QU + µGU = 0. (73)

This system is linear, becauseAU, BU, QU, andGU only depend onx andr , and its char-
acteristics are the same as those of the flow problem, but with opposite speeds.

In order to take advantage of a finite volume formulation which is similar to that used
for the flow equations, we set

t3xAU = (t3AU)x − t3(AU)x (74)
t3r BU = (t3BU)r − t3(BU)x, (75)

and then, substituting in Eq. (73), we have

t3τ − [t3AU ]x − [t3BU ]r + t3[(AU )x + (BU )r ] + t3QU + µGU = 0. (76)

Considering an elementary volume of integrationω with surfaceσ , we rewrite Eq. (76) in
conservation form and apply the Gauss theorem to obtain

∂

∂τ

∫
ω

t3 dÄ−
∫

σ

t3C dσ + t3

∫
σ

C dσ +
∫

ω

(t3QU + µGU) dω = 0, (77)

with C = AUnx + BUnr . In the previous formula we considered3 as piecewise constant
over the discretization volume. A characteristic-based approach is used to evaluate the
convective fluxes at the cell interfaces. The total flux across the interface (int) is evaluated
as the sum of two contributions which arise from the left (l ) and right (r ) sides of the
interface, according to the wave-propagating nature of the hyperbolic system

(t3C)int = (t3+C+)l + (t3−C−)r , (78)

where

C+ = LD+R, C− = LD−R, (79)
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andD+ + D− = D. The matrixD is

D =


Vn 0 0 0 0

0 Vn 0 0 0

0 0 Vn 0 0

0 0 0 Vn − a 0

0 0 0 0 Vn + a

 . (80)

The matricesD+ andD− are diagonal as well and they consist of the positive and negative
eigenvalues ofC, respectively.

The adjoint system Eq. (46) for the kinematical constraint can be manipulated in a similar
way. By adding a time derivativeµτ we have

µτ − (µu)x − (µw)r +∇ · (t3K) = 0. (81)

Once again the sign of the time derivate has been chosen in order to obtain a well posed
problem. The finite volume approximation is straightforward;

∂

∂τ

∫
ωb

µ dω −
∫

γb

µ(unx + wnr ) d0 +
∫

γb

(t3K) · n d0 = 0, (82)

whereωb is the projection of the blade surface onto the meridional plane, andγb its contour.
The fluxµ(unx + wnr ) at the cell interfaces is taken upwind.

5. RESULTS

In the following sections we present the results for the diffuser test case and for the
turbo-machinery model in the meridional plane. The grids we employ are rather coarse, as
the solved flow problems do not require additional resolution. In the diffuser case we show
that the results are basically unaffected by a finer grid and a larger design space.

In order to show convergence and consistency of the approach presented in the previous
sections, we made sure that the gradient becomes negligible. We therefore pursued opti-
mization steps far beyond the point where the functional has a substantial decrease: We
reached O(10,000) optimization steps. For applications, only 50–100 optimization steps
are acceptable. Within these limits we have reached a substantial decrease in the functional
in all the illustrated cases. After the first few optimization steps, the corrections to the flow
as well as to the adjoint solution also become so small that only a few relaxation steps in the
respective solvers are needed for convergence. The most expensive case presented, the two
counterrotating rotors, requires about 20 h of CPU time on a Digital Alpha 600 Workstation
after 10,000 optimization steps.

5.1. Diffuser

The diffuser is discretized over a 40× 20 grid. The inlet pressure ispin = 0.83, the outlet
pressurepout = 0.944. The imposed flow angle at the inlet varies from zero, at the bottom
wall, to 10 degrees, at the upper wall. We are looking for the diffuser geometry that best
approximates a zero flow angle at the outlet. As explained, the control is represented here
by the pressure gradient at each computational point lying on the upper wall. The number
of design variables is one less than the grid discretization in thex-direction. If a usual shape
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optimization method were to be applied in this case, we would obtain an additional adjoint
partial differential equation. The initial wall pressure distribution is a parabolic profile (see
Fig. 6) that satisfies the constraint on the pressure gradient in Fig. 1.

The initial and final geometry of the diffuser are depicted in Fig. 3. The initial geometry
is characterized by a nonzero flow angleσ(y)out at the exit. Thel 2 norm of the gradient

FIG. 3. Diffuser. The geometry and pressure field before (Top) and after (Bottom) the optimization process.
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FIG. 4. Diffuser. Gradient residualresversus optimization stepn.

residuals is presented in Fig. 4. The functionalD decreases noticeably (see Fig. 5), but
because of the pressure gradient constraint, the flow is not perfectly axial at the outlet.

The pressures displayed in Fig. 6 are relative to the cell centers next to the diffuser wall.
The initial and optimal configurations are shown. The unconstrained optimal wall pressure
distribution is depicted in the same figure. The small outlet pressure differences are due to
the various geometries pertinent to each case.

The used mesh makes the problem computationally quite small. Indeed, in such a simple
problem there are 40 design variables with strictly enforced inequality constraints on the
pressure gradient. We have increased the spatial resolution to 80× 40 grid points, thus
using 80 design variables. Even when the design space is doubled, the results obtained, in
terms of the pressure distribution, do not remarkably change, as seen in Fig. 7.

FIG. 5. Diffuser. Flow alignmentD versus optimization stepn.
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FIG. 6. Diffuser. Optimal pressure distribution on the upper wall, initial pressure distribution, and uncon-
strained optimal distribution.

5.2. Fan Stage

The distributed controlFθ is null everywhere except on the blades and is

Fθ (x, xi ) = F(ri )

[
1− cos

(
2π

x − xt

xl − xt

)]
(83)

so that the load on the leading(x = xl ) and trailing(x = xt ) edges is 0. For each considered

FIG. 7. Diffuser. Optimal pressure distribution with constraints on the allowed gradient. Results for a
40× 20 mesh versus those obtained with an 80× 40 mesh.
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FIG. 8. Fan stage. Gradient residual versus optimization steps.

blade, we have as many design parametersF(ri ) as the number of computational points in
the radial direction.

Therefore, Eq. (48) is discretized as

δL =
∑

i

δF(ri )L(ri )(ri − ri−1), (84)

where

L(ri ) =
∑

j

t3(ri , xj )
∂Q
∂Fϑ

(ri , xj )

[
1− cos

(
2π

xj − xt

xl − xt

)]
(xj − xj−1).

The design variables for this test case, where the grid is 60× 24, are 24 for the stator and

FIG. 9. Fan stage. Thrust versus optimization steps.
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FIG. 10. Counterrotating rotors. Initial force distributionFi on the blade.

24 for the rotor;ω = 1.58 and on the rotor the work is fixed to that relative to the initial
force distribution. The constraint on the total work performed by the rotor allows very
small variations of the force distribution on the rotor itself. This is seen in the gradient
components relative to the rotor which are two orders of magnitude smaller than those
relative to the stator. In a different test case relative to a single rotor but not shown here, we
found that for a gradient residual decrease of two orders of magnitude, the thrust gain is very
limited.

In the initial configuration, the stator does not exert any force on the flow, that is, it
coincides with a force-free stream surface. The gradient residual in Fig. 8 and the thrust in
Fig. 9 are plotted against the optimization step. After the computation of the first flow and

FIG. 11. Final force distribution.
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adjoint fields, each optimization step takes a significantly reduced amount of computational
time. The gradient decreases by more than two orders of magnitude and the thrust increases
by about 100%.

We consider an additional test case belonging to the same class of problem; two coun-
terrotating ducted fans. The counterrotating fan case is discretized on a 75× 25 grid, with

FIG. 12. Counterrotating rotors. Initial geometry.
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24× 2 design variables. Again the total work performed by the rotors is fixed and equal
to that of the initial force configuration. The two rotation speeds areω1 = −ω2 = 0.4. The
initial force radial distribution is constant on both blades. The thrust increases from 0.0235
to 0.0285 and reaches its asymptotic value after 20 design cycles. The computation was
pursued until the gradient was reduced by three orders of magnitude. The solution of the
maximum thrust is one with minimal axial deviation at the exit, and a force radial distri-
bution quite far from the initial guess. We show the initial and final force configurations in
Figs. 10 and 11. The solution in terms of force distribution is symmetric as expected. The
initial and final geometries of the blades are presented in Figs. 12 and 13.

FIG. 13. Counterrotating rotors. Final geometry.
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6. CONCLUSIONS

In this work we derive an adjoint optimization method for aerodynamic design based
on the solution of the inverse problem. We apply it to diffuser and turbo-machinery de-
sign. It takes advantage of the inverse solution of the flow equations to determine optimal
configurations. The flow constraints are imposed directly into the parameterization of the
flow distribution that has to be optimized. No additional Lagrange multipliers are needed
to satisfy such constraints. The relative advantages of using this approach compared to the
usual shape design optimization should be evaluated case by case considering the number
of flow constraints versus the number of geometric constraints. We believe this approach
to be more efficient for aerodynamic components where the flow quality is crucial.

APPENDIX

AU =


0 1 0 0 0

κV2− u2 −2(κ − 1)u −2κv −2κw 2κ

−uv v u 0 0

−uw w 0 u 0

u
(
2κV2− γ e

ρ

)
γ e
ρ
− κ(V2+ 2u2) −2κuv −2κuw γ u

 (85)

BU =



0 0 0 1 0

−uw w 0 u 0

−vw 0 w v 0

κV2− w2 −2κu −2κv −2(κ − 1)w 2κ

w
(
2κV2− γ e

ρ

) −2κuw −2κvw
γ e
ρ
− κ(V2+ 2w2) γw


(86)

QU =



0 α 0 1
r 0

− uw
r − uα

ρ
w
r + 2uα 0 u

r 0

− 2vw
r 0 2w

r
2v
r 0

w2− v2

r 0 2v
r − 2w

r 0

q51 q52 q53 q54 γ w
r + uα


(87)

q51 = − Fθ

ρ
(urgx + wrgr − v)−

(
γ e

ρ
− 2κV2

)(
w

r
+ uα

)
(88)

q52 = Fθ

ρ
rgx + α

(
γ e

ρ
− κV2

)
− 2κ

(
w

r
+ uα

)
(89)

q53 = − Fθ

ρ
+ 2κv

(
w

r
+ uα

)
(90)

q54 = Fθ

ρ
rgr + 1

r

(
γ e

ρ
− 2κV2

)
− 2κw

(
w

r
+ uα

)
(91)

∂Q
∂Fθ
= {0, rgx, −1, rgr , rgxu+ rgr w − v} (92)
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∂ H

∂U
= {0, gx, −1

r
, gr , 0} (93)

∂ H ∗

∂U
= {κV2− u2, −2(κ − 1)u, −2κv, −2κw, 2κ} (94)

L =



1− κV2

a2
2κu
a2

2κv
a2

2κw
a2

2κ
a2

Vt
ρ

nr
ρ

0 nx
ρ

0

− v
ρ

0 − 1
ρ

0 0

κV2−aVn
2a2

anx − 2κu
2a2 − κv

a2
anr − 2κw

2a2
κ
a2

aVn+ 2κV2

2a2 − anx + 2κu
2a2 − κv

a2 − anr + 2κw
2a2

κ
a2


(95)

R =



1 0 0 1 1

u ρnr 0 u+ anx u− anx

v 0 ρ v v

w −ρnx 0 w + anr w − anr

V2

2 ρVt ρv a2+ κV2

2k + aVn
a2+ κV2

2k − aVn


. (96)
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(1974).

5. F. Bauer, P. Garabedian, and D. Korn,Supercritical Wing Sections(Springer-Verlag, Berlin/New York,
1972).

6. G. Volpe,Geometric and Surface Pressure Restrictions in Airfoil Design, AGARD-R-780 (1990).

7. O. Pironneau, On optimum design in fluid mechanics,J. Fluid Mech. 59, 117 (1972).

8. A. Jameson,Aerodynamic Design via Control Theory, ICASE Report, 88–64;J. Sci. Comput.3, 233
(1988).

9. A. Jameson, Optimum aerodynamic design using control theory, inComputational Fluid Dynamics Review,
edited by M. Hafez (John Wiley & Sons, 1995) p. 495.

10. A. Jameson, L. Martinelli, and N. A. Pierce, Optimum aerodynamic design using the Navier–Stokes equations,
Theoret. Comput. Fluid Dynam. 10, 213 (1998).

11. R. F. van den Dam, J. A. van Egmond, and J. W. Sloof,Optimization of Target Pressure Distributions,
AGARD-R-780 (1990).

12. J. Elliot and J. Peraire Constrained, multipoint shape optimization for complex 3D configurations,Aeronaut.
J. Aug./Sept.365 (1998).

13. C. Bena, F. Larocca, and L. Zannetti, Design of multistage axial flow turbines and compressors, inIMech-E 3rd
European Conference on Turbomachinery Proceedings, London, 1999(Professional Engineering Publishers,
London, 1999) p. 635.

14. B. S. Stratford, The prediction of separation of the turbulent boundary layer,J. Fluid Mech. 5, 1 (1954).



AERODYNAMIC INVERSE PROBLEM ADJOINT EQUATIONS 115

15. L. Zannetti, A time-dependent method to solve the inverse problem for internal flows,AIAA J. 18, 754
(1980).

16. L. Zannetti and F. Larocca,Inverse Methods for 3D Internal Flows, AGARD-R-780 (1990).

17. M. Pandolfi, A contribution to the numerical prediction of unsteady flows,AIAA J. 22, 602 (1984).

18. A. Harten, B. Engquist, and S. Osher, Uniformly High-order-accurate essentially nonoscillatory schemes, III,
J. Comput. Phys. 71, 231 (1987).

19. F. Beux and A. Dervieux, Exact-gradient shape optimization of a 2-D Euler flow,Finite Elem. Anal. Design
12, 281 (1992).

20. A. Iollo and M. D. Salas, Contribution to the optimal shape design of 2D internal flows with embedded shocks,
J. Comput. Phys. 125, 124 (1996).

21. R. Fletcher,Practical Methods of Optimization(Wiley, New York, 1980).


	1. INTRODUCTION
	2. DIFFUSER WITH MINIMAL AXIAL DEVIATION AT THE OUTLET
	FIG. 1.
	FIG. 2.

	3. FAN STAGE WITH MAXIMUM THRUST
	4. ADJOINT EQUATION NUMERICAL SOLUTION
	5. RESULTS
	FIG. 3.
	FIG. 4.
	FIG. 5.
	FIG. 6.
	FIG. 7.
	FIG. 8.
	FIG. 9.
	FIG. 10.
	FIG. 11.
	FIG. 12.
	FIG. 13.

	6. CONCLUSIONS
	APPENDIX
	REFERENCES

