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An adjoint optimization method, based on the solution of an inverse flow prob-
lem, is proposed. Given a certain performance functional, it is necessary to find
its extremum with respect to a flow variable distribution on the domain boundary,
for example, pressure. The adjoint formulation delivers the functional gradient with
respect to such a flow variable distribution, and a descent method can be used for
optimization. The flow constraints are easily imposed in the parameterization of the
distributed control, and therefore those problems with several strict constraints on the
flow solution can be solved very efficiently. Conversely, the geometric constraints
are imposed either by additional partial differential equations, or by penalization.
By adequately constraining the geometric solution, the classical limitations of the
inverse problem design can be overcome. Several examples pertaining to internal
flows are given. © 2001 Academic Press
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1. INTRODUCTION

Aerodynamic design can be assisted in two essentially different ways. One, the cla
approach, is based on the inverse problem solution; the other, which is more recent, r
on numerical optimization.

Inthe inverse problem one must usually determine unknowns that are given in the natt
i.e., direct position of the problem. For example, a typical inverse problem s to find the airf
geometry, given the flight speed and the pressure distribution on its surface. In the c
sical works of Mangler [1] and Lighthill [2] the airfoil inverse problem was solved ir
the framework of potential flows and with the use of conformal mapping. Further d
velopments of this solution method are extensively accounted in [3] and are relatec
the introduction of viscous models for laminar and turbulent flows and to the solvak
ity conditions of the problem. Other examples of inverse problem solution methods
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found in the collection AGARD-R-780. In addition, Polito’s [4] approach, relative tc
the spectral solution of the inverse problem for airfoils, and that of Batiat. [5] for
shockless airfoils, should be mentioned. One drawback of inverse problems is that t
may be ill posed, as certain wall pressure distributions on airfoils result in open or se
intersecting profiles. Lighthill [2] discovered the solvability conditions that should be r
spected by pressure distributions within an incompressible potential flow model, wher
the solvability conditions for compressible flows were investigated in [6] and referenc
therein.

The appeal of the inverse problem solution for aerodynamic design declined as powe
computers and sound numerical methods that allow numerical optimization of aerodyna
components became available. Once a functional that defines the relative merit or
of a certain solution is defined, a numerical optimization algorithm can be as simple
(i) computing the functional gradient relative to the controls by divided differences, (i
marching toward the functional extremum using gradient information. If the number
parameters that have to be optimized is in fact not very small, finding the gradient requir
huge amount of computational time. The computation of each gradient component nee
flow evaluation, making optimizations using the Euler or Navier—Stokes models unfeasil

Greater computational efficiency is obtained by using the adjoint method (see [7-9]
compute the functional gradient. Evaluation of the gradient requires one adjoint calculat
and one flow calculation, regardless of the number of design variables. This approach
opened up the possibility of optimizing tridimensional compressible viscous flows ov
wing—-body configurations at high Reynolds numbers; see [10].

The advantages of numerical optimization over the inverse problem can be summari
in that numerical optimization allows the maximization or minimization of global quantitie
such as lift or drag in the presence of constraints, whereas for inverse problems the de
is limited to the pressure distribution selection on the boundary, which is given on the be
of designer experience and is therefore somewhat arbitrary. In addition, no control of
final geometry is possible. In this work we try to overcome these weaknesses by exten
the adjoint optimization method to inverse problems.

To formulate a shape optimization problem we need a functinalbe either minimized
or maximized. We haver = F[U (I"), I'] whereU is the flow variables vector and
represents the geometry. In the adjoint method such an extremum problem is solved u
a variational technique and introducing a Lagrange multiplier vestalual of the flow
variables vector. Using the Lagrange multipliers we are able to wfitéor I' < I' + 8T,
at the cost of solving a system of partial differential equations (PDESs) for the Lagran
multipliers which is the mathematical adjoint of the governing equations. Once the gradi
is known, the initial geometry is perturbed accordingly and the procedure is started all
again until a convergence criterion is satisfied.

The adjoint method can be adapted to an inverse problem formulationp(sgtbe
the flow quantity we prescribe on the flow-field boundary, where for exampke the
pressure ang is the curvilinear coordinate along the boundary. We define a cost/me
functional in much the same way as befofe:= F[U (p), p]. It should be noted that
the control is now the pressure distribution on the boundary, whereas in usual adj
methods the control is the boundary shape. The derivation of the adjoint follows the se
steps as in the shape optimization case, to finally obtd&irfor p(s) < p(s) + §p(s).
The pressure distribution is then altered according to the gradient information until 1
extremum is eventually reached. In this formulation the boundary shape results from
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solution of the inverse problem corresponding to each optimization step. In this respect
optimization of an inverse problem can be considerabadesign optimizatioas opposed
to the optimization of a direct problem, which is knownshsipe design optimizatiohe
idea of optimizing the pressure distribution is not new; it was proposed in [11] with tt
motivation that “this procedure avoids most if not all of the limitations of the pure invers
method.”

Flow design optimization offers a very simple way of implementing flow constraint:
as they can be directly included in the parameterization of the control. Inevitably,
the design process it is necessary to focus on a given model to account for the pt
cally relevant phenomena which affect performance. Yet, it is mandatory to include
sults obtained by more sophisticated models or other disciplines, in the selected mc
These results usually take the form of constraints on the governing equation variak
and not on the geometry. For example, let us consider a propeller to be designed to r
imize traction for given shaft work. The selected model is that of an inviscid compre:
ible fluid governed by the compressible Euler equations, a model that is appropriate
compute the traction of a propeller. However, one must also take into account the c
straints on the emitted noise. These requirements may have the form of constraint
the load of the propeller blades, which in turn is a function of the flow variables at tl
wall. Therefore any time we have a design problem where the effects that are not 1
resented in the governing equations are to be considered, the optimization based ol
solution of the inverse problem adjoint equations is a natural way of formulating t
problem.

For example, in the numerical tests, a diffuser is studied where the pressure distribu
at the wall is optimized for minimal axial deviation at the outlet. The maximum attainab
pressure gradient is constrained in order to avoid premature flow detachment. In the u
adjoint optimal shape design formulation, flow constraints are accounted for either thro
additional Lagrange multipliers, which means there are additional PDEs to be solved
by a penalization in the functional. For the method proposed here, the situation is rever
Geometric constraints result in either additional PDEs or in functional penalization. Hen
for example, the inverse problem closure and univalence conditions for airfoils are bypas
by imposing appropriate geometric constraints on the solution.

In the following, the problem is formulated and the gradient is derived in detail for tw
applications which are solved using an inverse problem. The first example is intende
make the ideas clear. We then concentrate on a case that is complicated by a flow m
which describes a turbo fan stage. As previously mentioned, the first case concerns
problem of designing a diffuser. We wish to determine the wall pressure distribution so t
the flow axial deviation at the outlet is at a minimum, with constraints on the allowed w:
pressure gradient.

The second example is more oriented to applications and is related to a flow mc
of a complete piece of turbo-machinery; see [13]. The blades of the turbo-machinery
modeled as flow surfaces of zero thickness which exert forces on the fluid flow. T
approximation introduces volume forces in the compressible Euler equations, whicl
the model adopted for the flow. Our method is such that, instead of modifying the sh:
of the flow surfaces that model the blades, we give the force that the blades exert on
flow and let the geometry accommodate this distribution of forces. The volume force c
tribution itself is modified according to the functional gradient, so that, for example, thrt
is maximized.
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2. DIFFUSER WITH MINIMAL AXIAL DEVIATION AT THE OUTLET

Let us consider a two-dimensional diffuser with total pressure, total temperature, ¢
flow angles imposed at the inlet; pressure is given at the outlet. The walls of the diffu:
should be designed so that the flow at the outlet has minimal axial deviation and the difft
causes a given pressure rise with a constraint on the maximum wall pressure grad
The constraint imposed qualitatively reflects the Stratford [14] semiempirical separat
criterion for decelerated turbulent boundary layers,

Cpy/S—— =Csm, (1)

whereC is a constant function of the Reynolds number per unit lergjghthe wall curvi-
linear coordinate, ang}, is the pressure coefficient. We take: x andc, = Z%, where

in refersto the inlet section. As the dynamic pressure is approximately equalmto the differe
between the total pressup® and the inlet pressung,,, we obtaing—‘; ~ %(p0 — pin)- The
maximum allowable pressure gradient at the wak)li§ displayed in Fig. 1. In addition,
the gradient is also required to be positive. This simple problem can be encountered in
design of wind tunnel diffusers, air-breathing engine intakes, or turbo-machine casings

2.1. Flow Model and Inverse Problem Solution Method

The flow is governed by the two-dimensional compressible Euler equations. In Cartes
coordinatesX, y), one has
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FIG. 1. Constraint on the pressure gradient alongxexis.
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where
0 pu pw
u? uw
u=Jru E_ p+p G- P ,
pw pUuw p+pow
€ up+e w(p+e)

and as usualp is the densityp is the pressure, anglis the total internal energy per unit
volume. The diffuser geometry is unknown, but it is obtained by imposing a given press
distribution p = pe(S) on the solid boundaries, as opposed to direct problems where t
geometry is known and the no-through-flow condition applies on the diffuser walls. In tt
sense, for the sake of conciseness, we can write EqQE2lAspe) = O.

This solution method is based on the ideas presented in [15] and [16]. The diffu
walls can be considered deformable and impermeable surfaces fastened to the diffuser
section that move under the effect of the imposed pressure. An initial wall configuratior
guessed. The resulting transient is described by integrating the equations that govert
time-dependent flow motion. The results differ from those of a usual flow solver in tv
ways. The first is that the no-through-flow boundary condition at the wall is replaced
a condition of given pressure; the second is that the number of equations that must sc
is increased by one, the kinematic equation governing the surface motion. This equatic
obtained by imposing the condition that the speed of the moving wall must be locally eq
to the normal flow velocity. Therefore, in terms of computational cost, the inverse proble
solution is equivalent to a direct solution.

A finite volume formulation, based on the approximate Riemann solver [17] to compt
the fluxes at cell interfaces, is applied. Second-order spatial accuracy is obtained usin
ENO class method [18]. At the end of the transient, the walls assume the shape that sc
the inverse problem, i.e., find the shape which induces the given pressure distributior
the walls.

2.2. Variational Formulation, Adjoint Equations, and Gradient

The wall pressurge(s) that should be imposed on the diffuser walls which minimize

the functional
otpeol =+ [ (%) 3)
ol =5 [, (5) @

has to be determined. In order to solve such a constrained extremum problem, we introf
the Lagrangian function

LU, pe, A) = D—i—/tAE(U,pe)dQ, (4)
Q

where'A (X, y) = {A1, A2, A3, A4} are Lagrange multipliers. This approach allows us to tree
the problem as unconstrained. A stationary configuration is found when the variation o
with respect to all its arguments, which are now considered independent functions, i
Computings £ as in [20], we obtain

8L =08Ly +8Lp, + 8L, (5)
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with
8Ly = 8Dy +/ 'A(Funy + Guny)sU do —/ (‘AxFu +'AyGy)sU dQ,  (6)
z Q

whereX is the boundary of flow field2, andFy, Gy are the Jacobian matricesfoandG.
All contributions tos £ must be 0 at the maximum. Hence, to find a stationary point, w
enforce

3Ly =0 8L, =0.

In general this results idLp, # 0. To reach the minimum, we takip, so thatsL =
8L, < 0.l1tshould be noted that the variationsbivith respect to the Lagrange multipliers
A simply yield the flow equations.

From the conditiord £y = 0, the adjoint of the Euler equations and its boundary condi
tions are obtained.

'AxFu +'AyGy =0inQ (7)

and

[%%(%)h(ﬁ)—i—tA(Funx—i—Guny) sU=0on%x, 8)
whereh(Z) is 1 at the outlet and 0 elsewhere. The previous relation requires additiol
interpretation according to the flow equation boundary conditions. For the inlet and ou
boundary conditions, see Eq. (43) for a similar case. The wall adjoint boundary condit
is peculiar to this problem and is hereafter considered.

Let us consider Eqg. (8). At the moving wadllJ can be written in terms of only three
independent variations, dp.(s) = 0. We takeS(pe) as the dependent variation and obtain

0
0 uny uny
(Funx + Guny)sU = 3(pu) 5,
0 wny wny 5(pv)
0 nx(e+p)/p ny(e+p/p

where we take into account that the wall velocity is 0 when the inverse problem solutior
attained. Equation (8), then, translates into the single condition

e+ p

A+ ULy + wAz + A=0 (9)
that has to be satisfied at the wall. The functional gradient is

8Dp. = (Aony + A3ny)sp ds (20)

wall
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2.2.1. Pressure Parameterization

The diffuser has imposed inlgt, and outletp,,; wall pressures. The distributed control
is the wall pressure gradient. On the discrete level, the pressure is recovered as

i d
Pe(Xi) = Pin+ Y MX)AXj, mM(Xj) = (d—pe) (11)
=2 X/

with the constraint

N
Z m(xj)AXj = Pout — Pin (12)
j=2

to match the exit pressuré.x; is the grid size in the-direction andN is the number of
computational points in the-direction. We havéN — 1 control parameters represented by
the pressure gradient at the discretization points.

Let us consider Eq. (10) and discretize it as

N
8Dp. = > Xi8pj, (13)
j=2
with x; = [(A2nx + A3ny)As]; andsp; = Zijzz(sm(xi)Axi. We have
N N
8Dp, = Zam(xi)Axi Z X (14)
i=2 j=i

Take i = AX; Z}“:i xj. If there were no constraints on the pressure gradient, w
could simply setsm(x;) = —ov; to obtainsD < 0. Yet, in view of Eqg. (12), we also
obtain

N
> @ism(x)Ax = 0. (15)
i=2

IfO < m(x) < (%), theng; = 1; otherwise we takém(x;) = 0 andg; = 0. By project-
ing the gradient onto the plane tangent to the constraints (see Fig. 2) wé Daved by
taking

N N
(i) x (i) x (i} =sme) =0 [ Vi D et —oi > Vi |- (16)

j=2 j=2

The solution of the optimization problem is achieved by initializing the coefficiexiks),
computing the corresponding wall geometry using the inverse problem, solving the adj
equations, and updating the coefficient&;), according to the projected gradient, until
the minimum is reached.
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FIG. 2. Projection of the gradient onto the constraint space.

2.3. Comparison with Classical Adjoint Formulation

The same problem can be solved by an adjoint formulation where the controls are
position of the upper boundary discretization points. In such a case, the functional to

minimized is
1 w 2
Dl"w:—/(—>d, 17
=3 [ () ay 17)

wherel',, is the upper wall. The solution to such a problem would be a straight duct, howev
leading to the same pressure at the inlet and outlet. In order to accomplish a certain pres
increase between the inlet and outlet it is also necessary to require that

w * 2 w *
Dol = (Pl — Pp)” = / [p" () — PRI*f (M) dTy,

r,
be minimized, wherg}; is the actual wall pressure at the inlgf, is the desired pressure,
and f(I",,) is the Dirac delta centered at the inlet. The outlet pressure is imposed in the fl
equation boundary conditions.

In addition, the pressure gradient at the upper wall must be bounded from above &
certain distributiorgmax(T ), for example, the Stratford distribution. We also want to avoic
negative pressure gradients, as in the case in the previous sections. Therefore we hav
additional functionals to minimize:

d
(2 5..)

(&)

d Z |d
DS[Fw] = <d_f() - gmax) + ’d_f() — Omax

and

dp\? |d
Dy[Tu] = (d‘;> - 12F
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The way to deal with such additional constraints is usually to penalize the original functio
to also minimize the additional terms. The Lagrangian becomes

4
£@L[@,A)::§:anDi+¥/‘AEﬂLT@)dQ%i/ n(p(ung 4+ wvny))dr,, (18)
— Q Ty

where ; are arbitrarily chosen weights andis an additional Lagrange multiplier to
account for the no-through-flow condition. It is well known that such functionals lec
to ill conditioned optimization problems resulting in very time-consuming or unfeasib
calculations. Further discussion of the penalization approach and alternate approache
be found in [12].

Let us forget the pressure gradient bounds and consider a problem wherBoidy
present. We want to find the shape of a diffuser so that it causes a certain pressur
crease. Since the outlet is allowed to change dimension, the optimization becomes
stiff. This is intuitively understood as follows. Let the initial configuration be a constal
section duct, so that the pressure is constant and equal to the outlet valuep;Siacgout
we have two contrasting effects. Lowering the wall locally, we would obtain a presst
decrease and consequently a decread®,irOn the other hand, the wall must rise to ac-
commodate a global section increase which determines a pressure decrement at the
for a given outlet pressure. The authors have in fact tested a usual adjoint code [20]
this simple problem. By using a conjugate gradient descent method without line search
were only able to attain a gradient reduction of about two orders of magnitude after 10,
optimization steps! Nozzle results presented in the literature, e.g., [19] and [20], show s
ilar stiff behavior even if the optimization problem is simpler, as the outlet geometry
fixed.

3. FAN STAGE WITH MAXIMUM THRUST

The fan of a turbojet engine is composed of a rotor that raises the total pressure of
flow and a stator to deflect the flux. We want to determine, using a simplified flow mod
the rotor and stator geometries that result in maximum thrust of the fan, for a given ama
of work performed on the fluid.

3.1. Turbo-machine Flow Model in the Meridional Plane

The flow deflection through the rotors and stators of a turbo-machine is the result of
forces that rotor and stator blades exert on the flow. An axisymmetric model of a turl
machine can be set up by replacing the blade rows with volume forces. Itis assumed tha
blade rows have vanishing thickness and infinite solidity, so that the single blade coinci
with a stream surface. Thus, in the case of an inviscid flow, the effect of solid blade:
modeled by volume forces orthogonal to the stream surfaces.

Let

F=Fi4+F&+Fy (19)

be the volume force, whelig&, andn are the unit vectors that are pertinent to the axial
radial, and tangential directions in cylindrical coordinatgs r &, ¥n). The distribution
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of the tangential componerf? = F?(x,r) is the function that has to be optimized,
the same way that the shape of a wall is usually optimized in common optimizati
algorithms.

The geometry of the blades, represented by 2D manifolds

O, r,9) =0 (20)
is found by solving
Q- jorn)-ve =0 (22)

since the blades are considered stream surfaces of the absolute or relative motion fo
stators and rotors, respectively. In the previous equatiea,ui + wé + vy is the flow
velocity vectorw is the angular velocity of the rotors, ajd= 0 for the statorsj = 1 for
the rotors.

The components of the volume forE& andF" are determined by enforcing the condition
that the blade manifolds be orthogonal to the volume forces

Fx Ve =0, (22)
which implies
®
FX=r—=F? (23)
OF}
and
Fr = rg FU. (24)
Oy

3.2. Inverse Problem

In this section details are given of the solution technique of the inverse problem cons
eringF? (x, r) as known. It should be noted that the distributfeh(x, r) is updated during
the optimization in order to maximize the cost function.

The solution method is based on the ideas presented in [13—16] and is based ¢
time-dependent process. The blades can be seen as deformable and impermeable st
constrained at the leading edge. They move like fastened sails waving under the effec
the wind. An initial configuration of such surfaces is guessed. The subsequent transie
described by integrating the equations governing the time-dependent flow motion. At
end of the transient, the blades assume the shape that solves the inverse problem.

In cylindrical coordinates, the compressible Euler equations with volume forces acti
on the fluid are

oU 0A 0B
A T =0, 25
ot Jr8x+3r +Q (25)
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where
0 pu pow
pu p+ pu? pUW
U=< pv A= puv B = pVw
pw pUw p+pw2
€ u(p+e) w(p+e)
pTw + pUa
Plrlw — Ex +,OU201
Q _ ZM _ FG
- r
W2—w?)
p(v ; wo) Fr
wBte _ . g4 u(p+ e

The boundary conditions at the entry section are the flow angles, the total pressure, an
total temperature when the flow is subsonic, while all the flow properties are prescrit
if the flow is supersonic; at the exit section, the static pressure is prescribed if the fi
is subsonic, while no boundary conditions are needed when the flow is supersonic.
blockage caused by the blades is taken into account by the terms containing the coeffi
o, with

d(log B)
o =
aX

and with E being the free passage per unit radius,

E=2ar-T,

whereT = T(x,r) is the sum of the estimated blade thickness, including the bounda
layers.

The system of Eq. (25) is integrated in time using a finite volume formulation based on
approximate Riemann solver [17] to compute the fluxes at the cell interfaces. Second-o
spatial accuracy is obtained using an ENO class method [18].

A blade surface changes shape during the transient to obey the impermeable wall cc
tion. Let us express Eg. (20) as

O, 1,3 t) =9 —gx,r,t) =0 (26)
so that Eqgs. (23) and (24) become

FX = —rngﬂ (27)
F' = —rg,F". (28)
Flow particles on®(x, r, %, t) = 0 must remain on the manifold for the impermeable

wall condition. It follows that, during the transient, the Langragian derivative of the functic
O(X,r, 1) has to be null,

de .
W:®t+(q—1wrn)-V®:0 (29)



98 IOLLO, FERLAUTO, AND ZANNETTI

that can be written as

v— jor

G = —UG —wg + ——. (30)

with j = O for stators and = 1 for rotors. The above equation is solved coupled to th
Euler equations, and it is integrated in time upwinding the spatial derivativaafording
tou andw.

3.3. Flow Equations Adjoint

The functional we consider is the conventional thrust expressed as

T(F") = {/[(p-k,ouz)rdr] - [/‘(p+pu2)rdr} =/ HU)dr, (31)
Ih out h Tio

n

where F? is the control, whiler, andry, are the tip and hub radius, respectively. The
maximum ofT is constrained by the steady state Euler equations

E(F)=A,+B, +Q=0 (32)
and by the kinematic constraint on the blades

G(U(F?)) = ug, + wg —

—0. (33)

We introduce the Lagrangian function

LU, g, F?, A, p) :/

o

H(U)dl"—i—/tAE(U, Fl’,g)dQ+//LG(U, ) dQ, (34)
Q Q

where'A(X, r) = {A1, Ao, A3, A4, A5} and u = p(X, r) are Lagrange multipliers. Let us
computes L. We have

SL=8Ly +8Lpr +8Lg+8Ln + 8L, (35)
with
oH G
8Ly = —sudr ASEy dQ —sUdQ
Ly /ruau ud +/Q o d +/Q”“au ud (36)
SLa =/‘5AE(U, F?, g)dQ (37)
Q
8L, =/G(U, 9)8u dS2 (38)
Q
0Q
o= | A—05F%dQ
SLE /Q 8F03 d (39)

3£g=/ tA(SdiQ—‘r/M(SngQ. (40)
Q Q
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The vectors{fF% and% are easily compute@% is the derivative of the difference of the
flux component in the-direction, taken at the inlet and outlet sections.

The single contributions of £ must be 0 at the maximum. At the stationary point we
enforce

8Ly =0 8L,=0 8L£,=0 6&Ly=0.
In general this results iBLgs # 0. To reach the maximum we takd=" so thatsL =

8Le» > 0, for example using a conjugate gradient method, as explained in the followin
We can manipulate Eqg. (35), obtaining

oH
Ly = mSUdF+/ tA(AUnX—i-BUnr)(SUda—/(tAXAU +'A,;By)sU dQ
Tio p)) Q
Q G
'A—=sUdQ / —sude, 41
+/Q U ATy (1)

whereX is the entire border of the flow field, andAy, By, andQy are Jacobian matrices.
From the conditiors £y = 0 we obtain the adjoint of the flow equations and the relative
boundary conditions; that is,

20Q G

‘AxAy + 'ArBy — tAm —Hag = 0inQ (42)
and
oH*
35U + 'A(Ayny +Byny)|dU=0o0n%x, (43)

whereH* = H for the inlet and the outlet, and* = 0 elsewhere.
The conditions £y = 0 yields

5cg=/ M5ng9+/ 'A8QgdQ
Qb Qb

[+ u)Jog sz + | 45Qqd2 =0, (44)

Qp

:/ u(q - g do
b

Qp
where it should be noted that the domain of integratigrand the bounding curvig, are
those relative to the blades. The last integral in the above equation is

/ tASdisz:/ 'AKV(8g) dQ = (tAK).nagda—/ V. (AK)sgd2, (45)
Qp

Qp b Qp

wheren = (ny, ny) and

K=rF’

C Oor o
S SN eoNeNe!
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Hence, the adjoint of the kinematic constraint is
(U)x + (uw); — V- (AK) =01in Qp (46)
and
(- n) + (AK) -n]8g =0 onTy, (47)

which yields the boundary conditions for Eq. (46) as explained in the following. The adjoi
equation of the kinematic constraint is coupled to Eq. (42) the same way the kineme
constraint is coupled to the flow equations.

It should be noted that the variations©fvith respect taA andu simply yield the flow
equations and the kinematic constraint respectively.

Finally, we are left with

t aQ g
3L =8Lps = /Qb AW(SF de. (48)

This functional depends dd, A, u; these are variables that satisfy the flow equations
the kinematic constraint, and the respective adjoints. Therefore, if we update the pre
distribution of F with

tA aQ

SF” = o'A—
aF?’

taking o > 0, thensL > 0. By iterating such a procedure, the maximum is eventuall
reached.

This method, namely the gradient method, has a very slow convergence rate. Be
convergence rates are obtained with the conjugate gradient method [21], in which
correction toF? at the iteratek is

k
(8Fl?)k =0 |:<tA88|§30> _ ‘Bkl(SFﬂ)k].:| ,

with

3.3.1. Inlet Boundary Conditions
Letn = (0, —1, 0) at the inlet, so that Eq. (43) reduces to

aH* 9A
sU—'A—sU=0. 49
au au (49)

As the flow variabled) have given conditions at the boundaries, the variagionat
the inlet is such that the boundary conditionsmre still satisfied. For example, if the
inlet flow is supersonic, all of the componentsWfare given. In this caséU = 0 and
consequently there is no boundary conditionfxon
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In the case of subsonic inlet, four boundary conditions must be provided, for exampl

dS=0, dT°=0, do =0, de=0, (50)
where
. p
=log— — 2«¢logp (51)
0
2ic? u
LN TP I S A VE P P (52)
14 14 Uz
(')‘:E:ﬁ7 GIEI%, (53)
u uo u Uo

where we set) = (p, pu, pv, pw, €) = (U, Uy, Uz, Ug, Us); kK = VT‘l; andy is the specific
heat ratio. We have

88: 5U1+ 5U2+ 5U3+ 5U4+ 5U5—0
8T = 3U1+ 3U2+ 5U3+ 5U4+ 5U5—0
(54)
o = 8uz+ 8u3_0
e = 5U2 + 8U4 =0.
By selectingdu, as the independent variation, we obtain
LI1V2
Uz((1+ yx)V2 — 2ykuyUs)
1
Us
sU = Uz dUp = Jiéuy (55)
Ug
uz
V2((1 — 4P uus + 2¢2V?)
UU2((1+ y«)VZ2 — 2ykuyUs)
from Eq. (54), and we have
oH*  0A
A Jisu, =0 56
o gy v (56)

from Eq. (49) so that for a generic increment

aH* A
— -'A—13 =0,
au 38U

which is a scalar relation that has to be satisfied by the componemts\¢e have four
conditions for the flow problem, and one for the adjoint equations.
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3.3.2. Outlet Boundary Conditions

At the outlet the situation is specular and Eq. (43) still holds. Again, the admissik
variations§U must satisfy the flow boundary condition. If the regime is supersonic, tt
outlet conditions for the flow are determined from the interior and, conversely, the cost
equations need five conditions to be prescribed at the exit. We/jes®.

If the flow is subsonic, one condition has to be suppliedsfdre.g., the static pressure
p at the outlet

p = 2ce — kpV? = constant (57)
Hence,
d d d ad d
5p = P sur+ 2P su,+ Psug+ 2P sus+ Psus o, (58)
auy au dus dUy dUs

which gives one of the components &, let us saysus, as a function of the others. As
n = (0, 1, 0), we obtain

Suq
dH* |, 9A Uy
A—|J =0, 59
{au * au] ) sus (59)
Uy
whereJ is
1 0 0 O
0 100
Jb=|10 0 1 0f. (60)
0O 00 1
—V72 u v w
Finally, from Eq. (59), we obtain
aH* | 9A
A Jo=0, 61
{au + au} ° (61)

the four boundary conditions fax on the outlet boundary.

3.3.3. Boundary Conditions at the Wall

At the wall we have

d0A 0B
Al — 2
<8UnX+8U )«SU 0. (62)

The no-through-flow condition at the wall requires the normal velocity component to |
zero, so that the above equation becomes

A{0, 8pny, 0,5pn;,0} =0 (63)
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and finally

ANy + Agqne = 0. (64)

3.3.4. Kinematic Adjoint Boundary Conditions

3g = 0 at the blade leading edge, and Eq. (47) is satisfied. There is no constramt or
at the trailing edge; hence we have

[1(g-n) + (AK) -n] =0, (65)

which is the boundary condition for the kinematic adjoint equation at the trailing edge.

3.4. Constraint on Rotor Blades

Rotor blades exchange work with the fluid. When looking for the maximum thrust, v
must keep the workV, performed on the fluid per unit time, constant. The force acting o
the blade is written in the form

FOx,r) = f(rg:; (66)

therefore the work in the meridional plane per unit time is

W= f(r)g(X)er drdx = /1 f (Nwc(r)rdr, (67)

Qp

wherec(r) is the chord of the blade profile ars@,, is area of the rotor surface projected
onto the meridional plane. In discrete fokii can be expressed as

M M
W=Z f(ri)fp(fi)=z fioi, (68)
i=1 i=1
whereg(ri) = wc(rj)ri(r; —ri—_1) andM is the radial number of the blade discretization
points. PosingV = W, we have
M
SW = sfig =0. (69)
i=1

This equation is satisfied #f and¢ are orthogonal in the appropriate Euclidean space
The variation of Lagrangian Eq. (48) is written as

9Q
aF?’

8£:/¢6F9d§2, v ="A (70)

and in discrete form we have

SL=> st (71)
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As we are searching for the maximum thrust, we must choose the cattretsthat Eq. (69)
is verified and the incremeitC = > v;8f; assumes its highest positive value. As in the
diffuser case, we obtain

M M
Sti=o|viY o?—o > Vg |. (72)
j=1 =1

4. ADJOINT EQUATION NUMERICAL SOLUTION

The numerical solution of the adjoint equations is obtained by using a first-order tin
dependent technique based on a finite volume discretization. The solver computes the fl
at cell interfaces using a flux-vector splitting technique. In a similar way, the bounda
conditions are imposed on the numerical fluxes at the computational field edges.

Let us consider the adjoint equations. If a time derivativeis added to Egs. (42) and
(43), we are led to the hyperbolic system

"Ar —"AxAuy — "ArBu + 'AQu + uGy = 0. (73)

This system is linear, becaufg), By, Qu, andGy only depend orx andr, and its char-
acteristics are the same as those of the flow problem, but with opposite speeds.

In order to take advantage of a finite volume formulation which is similar to that use
for the flow equations, we set

"AxAy = (AAY)x — 'A(Au)x (74)
tArBU = (tABU)r - tA(Bu)x» (75)

and then, substituting in Eq. (73), we have
"Ar — ['AAUlx — ['ABulr + 'Al(Au)x + Bu)i] +'AQu + uGy = 0. (76)

Considering an elementary volume of integratiowith surfaces, we rewrite Eq. (76) in
conservation form and apply the Gauss theorem to obtain

ai/‘AdQ—/tACda+tA/Cda+/(tAQU+MGU)dw=o, (77)
T w o o w

with C = Ayny + Byn;. In the previous formula we consider@das piecewise constant
over the discretization volume. A characteristic-based approach is used to evaluate
convective fluxes at the cell interfaces. The total flux across the inteiifagés(evaluated
as the sum of two contributions which arise from the I&ftand right ¢) sides of the
interface, according to the wave-propagating nature of the hyperbolic system

(AC)int = (ATCH) + (‘A~C)y, (78)
where

Ct=LD'R, C =LDR, (79)
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andD™ 4+ D~ = D. The matrixD is

Vi, 0 0 0 0
Vi O 0 0
D= 0V, O 0 (80)

0 0 V,—a 0
0 O 0 W+a

o O O O

The matriceD* andD™ are diagonal as well and they consist of the positive and negati
eigenvalues o€, respectively.

The adjoint system Eq. (46) for the kinematical constraint can be manipulated in a sim
way. By adding a time derivative, we have

e — (uWy — (uw)r + V- (‘AK) = 0. (81)

Once again the sign of the time derivate has been chosen in order to obtain a well pc
problem. The finite volume approximation is straightforward;

i/ udw—/ u(unx+wnr)dl”+/(‘AK)~ndF=O, (82)
0T Jouy, Y ”

wherewy, is the projection of the blade surface onto the meridional planeygitsicontour.
The flux(uny + wny) at the cell interfaces is taken upwind.

5. RESULTS

In the following sections we present the results for the diffuser test case and for
turbo-machinery model in the meridional plane. The grids we employ are rather coarse
the solved flow problems do not require additional resolution. In the diffuser case we st
that the results are basically unaffected by a finer grid and a larger design space.

In order to show convergence and consistency of the approach presented in the pre
sections, we made sure that the gradient becomes negligible. We therefore pursued
mization steps far beyond the point where the functional has a substantial decrease
reached O(10,000) optimization steps. For applications, only 50-100 optimization st
are acceptable. Within these limits we have reached a substantial decrease in the funct
in all the illustrated cases. After the first few optimization steps, the corrections to the fl
as well as to the adjoint solution also become so small that only a few relaxation steps ir
respective solvers are needed for convergence. The most expensive case presented, t
counterrotating rotors, requires about 20 h of CPU time on a Digital Alpha 600 Workstati
after 10,000 optimization steps.

5.1. Diffuser

The diffuser is discretized over a 4020 grid. The inlet pressure %, = 0.83, the outlet
pressurepoyt = 0.944. The imposed flow angle at the inlet varies from zero, at the botto
wall, to 10 degrees, at the upper wall. We are looking for the diffuser geometry that b
approximates a zero flow angle at the outlet. As explained, the control is represented
by the pressure gradient at each computational point lying on the upper wall. The nurr
of design variables is one less than the grid discretization ir-flieection. If a usual shape
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optimization method were to be applied in this case, we would obtain an additional adjc
partial differential equation. The initial wall pressure distribution is a parabolic profile (s
Fig. 6) that satisfies the constraint on the pressure gradient in Fig. 1.

The initial and final geometry of the diffuser are depicted in Fig. 3. The initial geomet
is characterized by a nonzero flow angléy)o at the exit. Thd? norm of the gradient

0.25 0.5 0.75
X
0.9
0.8
0.7

0.6

IIII|!I|IE||||||||||

05
>
0.4
0.3
02
0.1
0.25 05 075
X

FIG. 3. Diffuser. The geometry and pressure field before (Top) and after (Bottom) the optimization proces
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1 10 100 1000 n

FIG. 4. Diffuser. Gradient residuaksversus optimization steq.

residuals is presented in Fig. 4. The functiomaldecreases noticeably (see Fig. 5), but
because of the pressure gradient constraint, the flow is not perfectly axial at the outlet.

The pressures displayed in Fig. 6 are relative to the cell centers next to the diffuser w
The initial and optimal configurations are shown. The unconstrained optimal wall press
distribution is depicted in the same figure. The small outlet pressure differences are du
the various geometries pertinent to each case.

The used mesh makes the problem computationally quite small. Indeed, in such a sir
problem there are 40 design variables with strictly enforced inequality constraints on
pressure gradient. We have increased the spatial resolution %0480grid points, thus
using 80 design variables. Even when the design space is doubled, the results obtaine
terms of the pressure distribution, do not remarkably change, as seen in Fig. 7.

D 0.016 T T T

A

0.014

0.012

0.01

0.008

0.006

0.004

0.002

O 1 Il 1
1 10 100 1000 n

FIG. 5. Diffuser. Flow alignmenD versus optimization ste.



108 IOLLO, FERLAUTO, AND ZANNETTI
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FIG. 6. Diffuser. Optimal pressure distribution on the upper wall, initial pressure distribution, and unco|
strained optimal distribution.

5.2. Fan Stage

The distributed controF? is null everywhere except on the blades and is

FO(x, %) = Fr)) [1 - cos(Zn X=X )] (83)

X — Xt

so that the load on the leadiig = x;) and trailing(x = x;) edges is 0. For each considered

0.95
0.94
0.93
0.92
0.91

0.9

2 0.89
0.88
0.87
0.86

0.85

[I]III][I]l[llllIlllllI]IIIIIII][lllllllllllllllll[lll

0.84
RN [ TR T T (N TR T NS [ T T N
0.25 0.5 0.75
X

FIG. 7. Diffuser. Optimal pressure distribution with constraints on the allowed gradient. Results for
40 x 20 mesh versus those obtained with an880 mesh.
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2000 4000 6000 8000 10000 12000 14000 16000 n

FIG. 8. Fan stage. Gradient residual versus optimization steps.

blade, we have as many design paramef&rs) as the number of computational points in
the radial direction.
Therefore, Eq. (48) is discretized as

8L = ZSf(fi)L(ri)(ri —ri_1), (84)

where

X — Xt

aQ Xi — Xt
L(ri) = z}: tA(ri,xj)ﬁ(ri, X;) {1— cos<2n ) )] (Xj — Xj_1).
The design variables for this test case, where the grid is 8@, are 24 for the stator and

T 0-042 T T T T T T T

0.04 | 1

0.038 i

0.036 1

0.034 1

0.032 H i

0.03 4

0.028 4

0.026 - -
0 2000 4000 6000 8000 10000 12000 14000 16000 n

FIG. 9. Fan stage. Thrust versus optimization steps.
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00085 — T Fad
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FIG. 10. Counterrotating rotors. Initial force distributiof on the blade.

24 for the rotor;w = 1.58 and on the rotor the work is fixed to that relative to the initial
force distribution. The constraint on the total work performed by the rotor allows ve
small variations of the force distribution on the rotor itself. This is seen in the gradie
components relative to the rotor which are two orders of magnitude smaller than th
relative to the stator. In a different test case relative to a single rotor but not shown here,
found that for a gradient residual decrease of two orders of magnitude, the thrust gainis
limited.

In the initial configuration, the stator does not exert any force on the flow, that is,
coincides with a force-free stream surface. The gradient residual in Fig. 8 and the thrus
Fig. 9 are plotted against the optimization step. After the computation of the first flow a

1.00

0.67

0.33

0.0

-0. Fli

FIG. 11. Final force distribution.
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adjoint fields, each optimization step takes a significantly reduced amount of computatic
time. The gradient decreases by more than two orders of magnitude and the thrust incre
by about 100%.

We consider an additional test case belonging to the same class of problem; two c
terrotating ducted fans. The counterrotating fan case is discretized o 23 9rid, with

Z

FIG. 12. Counterrotating rotors. Initial geometry.
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24 x 2 design variables. Again the total work performed by the rotors is fixed and eqt
to that of the initial force configuration. The two rotation speeds.are —w, = 0.4. The
initial force radial distribution is constant on both blades. The thrust increases from 0.02
to 0.0285 and reaches its asymptotic value after 20 design cycles. The computation
pursued until the gradient was reduced by three orders of magnitude. The solution of
maximum thrust is one with minimal axial deviation at the exit, and a force radial distr
bution quite far from the initial guess. We show the initial and final force configurations
Figs. 10 and 11. The solution in terms of force distribution is symmetric as expected. T
initial and final geometries of the blades are presented in Figs. 12 and 13.

V4

FIG. 13. Counterrotating rotors. Final geometry.
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In this work we derive an adjoint optimization method for aerodynamic design bas
on the solution of the inverse problem. We apply it to diffuser and turbo-machinery c
sign. It takes advantage of the inverse solution of the flow equations to determine opti
configurations. The flow constraints are imposed directly into the parameterization of
flow distribution that has to be optimized. No additional Lagrange multipliers are neec
to satisfy such constraints. The relative advantages of using this approach compared t
usual shape design optimization should be evaluated case by case considering the nt
of flow constraints versus the number of geometric constraints. We believe this appro
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to be more efficient for aerodynamic components where the flow quality is crucial.

kVZ2—u?
Ay = —Uv
—Uw

u(2/<V2 — e

0
—Uw
BU — —vw

kVZ — w?

Qu -

FG

Os1 = —7(Urgx +wrgr —v) —

F9
Os2 = —TI0Qx +
o

0

F
Os3 = —— + v
1)

FG
Os4 = —TI0Qr +
0

0Q
aF?

)

o

r

¢
(o0
¢

APPENDIX
1 0 0
—2(k — Du —2kv  —2kw
v u 0
w 0 u

0
2k
0
0

%E—K(Vz—i-Zuz) —2xUv  —2kUw yu

0
w
0

2cu

w(ZKVZ—y—e) —2kuw  —2kvw &
L p o

o o @ 0
4+2ux O g 0
0 o 0

ye

ye

0 1

0 u

w v
—2KV —2(k — Dw

2k
—k (V2 +2uw?) yw |

0s2 Os3 Osa ¥y + Ux |
KV2> — 2 (rﬂ + U(x)
2/<V2> — 2xw (% + Ua>

= {09 rgXa _17 rgl’s rg)(u +rgl’w - U}

0
0
0

(V_e - szz) (ﬂ + Ua)
0 r

(85)

(86)

(87)

(88)

(89)

(90)

(91)

(92)



114 IOLLO, FERLAUTO, AND ZANNETTI
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